Homotopy Coherent Category Theory
نویسنده
چکیده
منابع مشابه
Homotopy Coherent Structures
Naturally occurring diagrams in algebraic topology are commutative up to homotopy, but not on the nose. It was quickly realized that very little can be done with this information. Homotopy coherent category theory arose out of a desire to catalog the higher homotopical information required to restore constructibility (or more precisely, functoriality) in such “up to homotopy” settings. The firs...
متن کاملA Coherent Homotopy Category of 2-track Commutative Cubes
We consider a category H ⊗ (the homotopy category of homotopy squares) whose objects are homotopy commutative squares of spaces and whose morphisms are cubical diagrams subject to a coherent homotopy relation. The main result characterises the isomorphisms of H ⊗ to be the cube morphisms whose forward arrows are homotopy equivalences. As a first application of the new category we give a direct ...
متن کاملHomotopy Coherent Adjunctions and the Formal Theory of Monads
In this paper, we introduce a cofibrant simplicial category that we call the free homotopy coherent adjunction and characterise its n-arrows using a graphical calculus that we develop here. The hom-spaces are appropriately fibrant, indeed are nerves of categories, which indicates that all of the expected coherence equations in each dimension are present. To justify our terminology, we prove tha...
متن کاملUsing non-cofinite resolutions in shape theory. Application to Cartesian products
The strong shape category of topological spaces SSh can be defined using the coherent homotopy category CH, whose objects are inverse systems consisting of topological spaces, indexed by cofinite directed sets. In particular, if X, Y are spaces and q : Y → Y is a cofinite HPol-resolution of Y , then there is a bijection between the set SSh(X, Y ) of strong shape morphisms F : X → Y and the set ...
متن کاملHomotopy Coherent Adjunctions of Quasi-categories
We show that an adjoint functor between quasi-categories may be extended to a simplicially enriched functor whose domain is an explicitly presented “homotopy coherent adjunction”. This enriched functor encapsulates both the coherent monad and the coherent comonad generated by the adjunction. Furthermore, because its domain is cofibrant, this data can be used to construct explicit quasi-categori...
متن کامل